本文共 899 字,大约阅读时间需要 2 分钟。
傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的;
在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。 是否有一种数学工具将连续非周期信号变换为周期离散信号呢?抱歉,真没有。比如傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数;
傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号;如图所示:
前面部分是将周期信号转换成傅里叶级数;后面部分将非周期信号转换成频域非周期的连续信号;
或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进行傅里叶变换。
所以说,钢琴谱其实并非一个连续的频谱,而是很多在时间上离散的频率,但是这样的一个贴切的比喻真的是很难找出第二个来了。因此在傅里叶变换在频域上就从离散谱变成了连续谱。那么连续谱是什么样子呢?你见过大海么?为了方便大家对比,我们这次从另一个角度来看频谱,还是傅里叶级数中用到最多的那幅图,我们从频率较高的方向看。